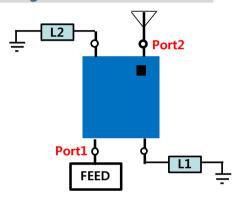
Low-Band Carrier Aggregation Solution

(Preliminary Datasheet-Ver. 1.5)

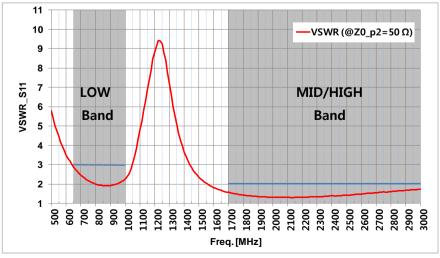
Applications


► Mobile device antennas for low frequency Inter-band carrier aggregation(B5&B12/B5&B17/B8&B20/B18&B28)

Features

- Wideband matching for antennas (Bandwidth enhancement up to 300%)
- No DC power supply and software control required
- Applicable to primary and secondary antennas
- Simplified circuit design than that of switchable antenna
- ▶ Capable of antenna sharing for variation handset models

Block Diagram

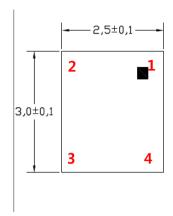


- ▶ Port 1 is connected to RF signal.
- Port 2 is connected to an antenna.
- ▶ L1 and L2 are external matching components.

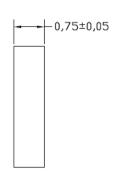
Specifications

Dimensions [mm]	2.5 X 3.0 X 0.7
Applicable frequency range [MHz]	650~1000 (Low Band) / 1700~3000 (MID/HIGH Band)
*VSWR (:1) @port1	< 3 (Low Band) / < 2 (MID/HIGH Band)
Operating temperature [°C]	-40 to +85
Storage temperature [°C]	-40 to +125

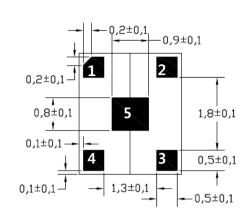
* Specified VSWR values are measured in +25°C. Where, the port 2 is terminated with 50Ω and WBMC is connected L1(12nH) and L2(15nH).


RND Center, EMW / 2014-03-14

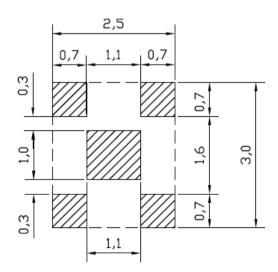
Note: All specifications are subject to change without notice.


Package outline

[Unit: mm]


TOP VIEW

SIDE VIEW


BOTTOM VIEW

Pin No.	Description
1	Port2 (Ant.)
2	L2 connected port
3	Port1 (Feed)
4	L1 connected port
5	Dummy pad

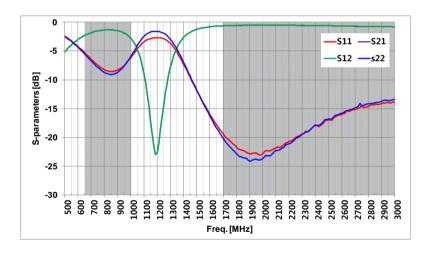
Land pattern

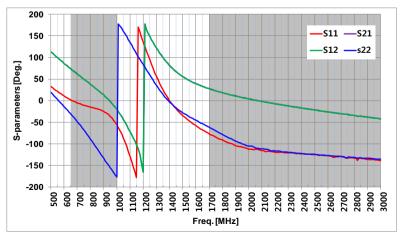
[Unit: mm]

Evaluation board I (2-Port)

[Unit: mm]

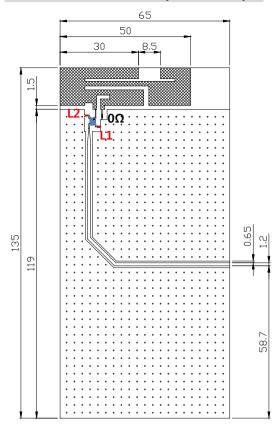
Substrate


FR4 (ϵ_r =4.4) Thickness=0.8mm Metal thickness=25um

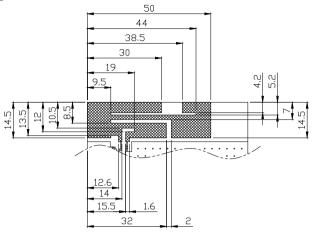

Outline size = 24 X 24 mm

Parts list

No.	Type	Value
L1	1005	10nH
L2		10nH


Typical data on EVB I

[Unit: mm]


Evaluation board II (with ANT)

Antenna

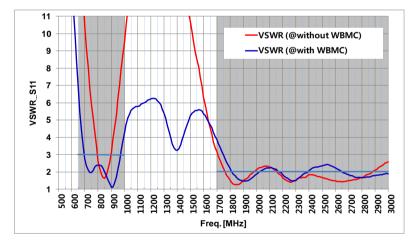
Type: Inverted-F

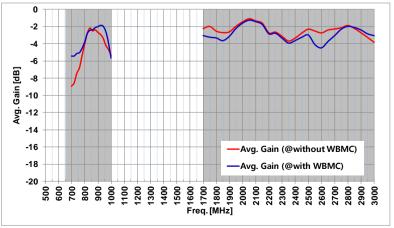
Non-ground size = 65 X 17 mm

Substrate

FR4 (ε_r =4.4)

Thickness=0.8mm

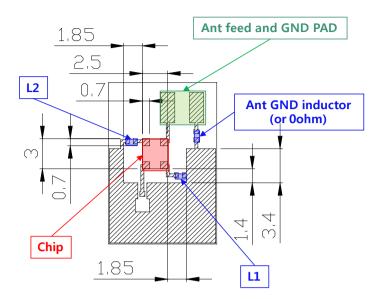

Metal thickness=25um


Outline size = 65 X 135 mm

Parts list

No.	Type	Value
L1	1005	10nH
L2		10nH

Typical data on EVBII



Application note

[Unit: mm]

TOP VIEW

- ▶ Metal ground under the area of chip, L1 and L2 must be removed.
- As the value of the antenna GND inductor increases, the radius of the impedance locus increases and the resonant frequency at Band I shifts toward the higher frequency side.
- ▶ As the value of L1 decreases, the resonant frequency near 900 MHz shifts toward the higher frequency side.
- ▶ As L2 decreases, the resonant frequency near 700 MHz increases.
- Available values of L1 and L2 are 4.7 nH up to 15 nH.

Part No (EMW)

Part No (EMW) EWM-3025-F0630EA0

- (1) EMW
- (2) series: Wideband impedance Matching component
- (3) Dimensions First two disits: length(mm)

Last two disits: Width(mm)

(4) Matching band frequency F: Fequency

First two disita : 0.6GHz Last two disits : 3 GHz

(5) Packaging P: Embossed paper tape

E: Embossed plastc tape

(6) termination N: nickel barrier

A: Au plating

(7) Version Nomber